1 Calculs

Exercice 1

$$A = \frac{17}{27} \quad B = \frac{37}{36} \quad C = -\frac{47}{36} \quad D = \frac{6}{35}$$

$$E = \frac{2}{3} \quad F = \frac{1}{7} \quad G = \frac{31}{15} \quad H = \frac{5}{2}$$

$$I = -\frac{1}{3} \quad J = -\frac{5}{3} \quad K = \frac{11}{18} \quad L = \frac{17}{12}$$

$$M = -1 \quad N = \frac{22}{21} \quad O = -\frac{1}{4} \quad P = \frac{4}{5}$$

$$Q = \frac{4}{3} \quad R = -\frac{11}{18} \quad S = -9 \quad T = \frac{3}{5}$$

Exercice 2

$$A = \frac{-13x^2 + 22x - 3}{4 - 3x} \quad B = \frac{-8x^2 + 24x - 14}{2x - 5} \quad C = \frac{3x^2 + 8x - 3}{(2x + 1)(x - 2)} \quad D = \frac{-3x^2 - 16x + 15}{(x + 2)(3x - 1)}$$

$$E = \frac{5x^2 + 17x + 19}{(x + 2)^2} \quad F = \frac{12x^2 - 10x - 5}{(2x - 1)^2} \quad G = \frac{2}{(x - 1)(x + 1)} \quad H = \frac{1}{x^2 - 1}$$

Exercice 3

$$A = \frac{1}{5} \qquad B = \frac{11}{9} \qquad C = \frac{25}{32} \qquad D = a(a+b)^2$$

$$E = \frac{1}{3}n + \frac{1}{3} \qquad F = \frac{3}{2}n(n+1) \qquad G = \sqrt{ab} \qquad H = \frac{4a\sqrt{a^2 - b^2}}{b^2}$$

$$I = 2^{n+1} \qquad J = 2^{2^{2n}} \qquad K = 2^n \qquad L = 2^{2^{n+1}}$$

$$M = \frac{3^9}{2^6 \times 5^{20}} \qquad N = \frac{3^{15} \times 5^3}{2^9} \qquad O = \frac{10^6}{3^{12}} \qquad P = -\frac{2^{24}}{5^6 \times 3^{12}}$$

$$Q = \frac{a^4}{c^3} + \frac{a^3}{bc^2} \qquad R = \frac{b^{17}}{a^9c^5} \qquad S = \frac{1}{2} \qquad T = \ln\left(\frac{a}{1-a}\right)$$

$$U = 1 \qquad V = \frac{1}{1-e^a} \qquad W = 1 \qquad X = \frac{ax}{b+x}$$

2 Trinômes

Exercice 4
a)

$$A = 24x^2 + 38x + 15$$
 $B = -6x^2 + 29x - 28$ $C = -12x^2 + 17x + 45$

$$D = 6x^2 + 8x - 62$$
 $E = 12x^2 + 17x - 7$ $F = 35x^2 - 20x - 2$

$$G = 5x^2 + 9$$
 $H = -46x^2 + 5x + 67$ $I = 11x - 16$

b)

$$A = x^2 + 14x + 49$$
 $B = y^2 - 18y + 81$ $C = 9x^2 + 30x + 25$

$$D = 4x^2 - 12x + 9$$
 $E = x^2 - 64$ $F = 16x^2 - 25$

$$G = 4x^2 - 8x + 17$$
 $H = -11x^2 + 32x + 9$ $I = -8x^2 + 42x - 65$

$$J = -31x^2 + 3x + 39$$
 $K = 7x^2 + 52x + 14$ $L = 22x^2 - 3x - 6$

 $Exercice\ 5$

$$A(x) = 3 + \sqrt{6}$$
 ou $x = 3 - \sqrt{6}$ B) pas de solution $C(x) = -\frac{2}{5}$

$$D(x) = 5$$
 $E(x) = \frac{3}{2}$ ou $x = \frac{5}{3}$ $F(x)$ pas de solution

$$G(x) = 0$$
 ou $x = \frac{11}{3}$ $H(x) = -1 - \sqrt{3}$ ou $x = -1 + \sqrt{3}$ $I(x) = 0$ ou $x = 2$

Exercice 6

$$A)[1,4]$$
 $B) \left] -\infty, \frac{1-\sqrt{21}}{2} \right] \cup \left[\frac{1+\sqrt{21}}{2}, +\infty \right[C)$ pas de solution

$$D)\mathbb{R}$$
 $E)\mathbb{R}\setminus\left\{\frac{4}{3}\right\}$ $F)\left\{-\frac{2}{5}\right\}$

G)
$$]-1-\sqrt{2},0[\cup]-1+\sqrt{2},+\infty[H)]-\infty,-1[I)]-\infty,-1[I)]-\infty,-1]\cup[0,\frac{5}{3}]$$

Exercice 7

a)

$$A = (x - 1)(x - 4) \quad B = 6\left(x - \frac{5}{3}\right)\left(x - \frac{3}{2}\right) \quad C = 2\left(x - \frac{1 - \sqrt{3}}{2}\right)\left(x - \frac{1 + \sqrt{3}}{2}\right)$$

$$D = (x-1)^2$$

$$E = (x+1)^2$$

$$D = (x-1)^2 E = (x+1)^2 F = (x-1)(x+1)$$

$$G = (x+3)^2 H = (x-7)^2$$

$$H = (x - 7)^2$$

$$I = (x-5)(x+5)$$

$$J = (3x - 5)^2$$

$$K = (4x + 3)^2$$

$$J = (3x - 5)^2$$
 $K = (4x + 3)^2$ $L = (2x - 5)(2x + 5)$

b)

$$A = (x - \sqrt{7})(x + \sqrt{7})$$
 $B = (\sqrt{3a} + b)^2$ $C = (a - 4xy)(a + 4xy)$

$$D = (a+x)(a+y)$$

$$D = (a+x)(a+y)$$
 $E = (a+x)(b+y)$ $F = (2a+3b)^2$

$$G = (x + y + 2)^2$$

$$G = (x + y + 2)^2$$
 $H = (3 - (a - b)^2)^2$ $I = (a + b + c)^2$

$$J = (a+b+c)^2$$

$$K = (1 - x^2)^2$$

$$J = (a+b+c)^2$$
 $K = (1-x^2)^2$ $L = (x-m)(mx-1)$

Inégalités $\mathbf{3}$

Exercice 8

- a) $A \leq B$
- b) $A \leqslant B$
- c) $A \leq B$ si $x \in [-1, 1], A \geqslant B$ sinon
- d) $A \ge B$ si $x \in [1, e], A \le B$ sinon (avec toujours x > 0)
- e) $A \leq B$ si $x \in [-\infty, -3] \cup] \frac{2}{3}, 0[, A \geqslant B$ sinon
- f) $A \leq B$ si $x \in]-\frac{1}{e}$, e], $A \geq B$ sinon (avec toujours x > 0 et $x \neq \frac{1}{e}$)

Étude de fonctions 4

a) $f: x \mapsto x^3$ est définie et dérivable deux fois sur \mathbb{R} comme fonction polynôme.

Le tableau de signe est immédiat :

x	$-\infty$		0		$+\infty$
f(x)		_	0	+	

$$\forall x \in \mathbb{R}, f'(x) = 3x^2 \text{ et } f''(x) = 6x.$$

x	$-\infty$		0		+∞
f''(x)		_	0	+	
f'(x)		+	0	+	
f(x)	$-\infty$				+∞

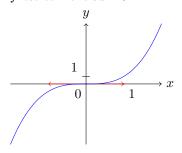
f est concave sur \mathbb{R}_{-} , convexe sur \mathbb{R}^{+} .

b) $f: x \mapsto (x+1)^2$ est définie et dérivable deux fois sur $\mathbb R$ comme fonction polynôme. Elle est évidemment positive (carré), et s'annule en 0.

$$\forall x \in \mathbb{R}, f'(x) = 2x + 2 \text{ et } f''(x) = 2 > 0.$$

x	$-\infty$		-1		$+\infty$
f''(x)			+		
f'(x)	_	-	0	+	
f(x)	$+\infty$		0	<i></i>	+∞

f est convexe sur \mathbb{R} .

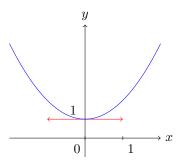


c) $f: x \mapsto x^2 + 1$ est définie et dérivable deux fois sur $\mathbb R$ comme fonction polynôme. Elle est évidemment strictement positive (carré plus 1).

$$\forall x \in \mathbb{R}, f'(x) = 2x \text{ et } f''(x) = 2 > 0.$$

x	$-\infty$ 0 $+\infty$
f''(x)	+
f'(x)	- 0 +
f(x)	$+\infty$ $+\infty$

f est convexe sur \mathbb{R} .



d) $f: x \mapsto \frac{3x+4}{5x-2}$ est définie et dérivable deux fois sur $\mathbb{R} \setminus \{\frac{2}{5}\}$ comme fonction quotient de polynômes dont le dénominateur ne s'annule pas.

On a le tableau de signe :

x	$-\infty$		$-\frac{4}{3}$		$\frac{2}{5}$		$+\infty$
3x+4		_	0	+		+	
5x-2		_		_	0	+	
f(x)		+	0	_		+	

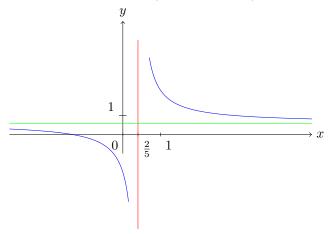
$$\forall x \in \mathbb{R} \setminus \{\frac{2}{5}\}, f'(x) = -\frac{26}{(5x-2)^2} \text{ et } f''(x) = \frac{260}{(5x-2)^3}$$

x	$-\infty$	$+\infty$
f''(x)	_	+
f'(x)	_	_
f(x)	$\frac{3}{5}$	$+\infty$ $\frac{3}{5}$

Les limites en l'infini s'obtiennent au moyen de la forme :

$$f(x) = \frac{3}{5} \left(\frac{1 + \frac{4}{3x}}{1 - \frac{2}{5x}} \right).$$

f est concave sur $]-\infty, \frac{2}{5}[$, convexe sur $]\frac{2}{5}, +\infty[$.



e) $f: x \mapsto \ln(x) - 1$ est définie et dérivable deux fois sur \mathbb{R}_+^* comme somme de fonctions dérivables. On a bien sur, pour tout $x \in \mathbb{R}_+^*$

$$f(x) > 0 \iff \ln(x) > 1$$

 $\iff x > e$

et

$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{1}{x} \text{ et } f''(x) = -\frac{1}{x^2} < 0$$

x	0	$+\infty$
f''(x)		-
f'(x)		+
f(x)	$-\infty$	+∞

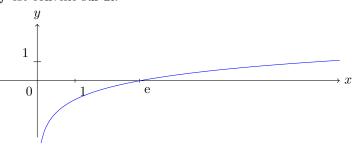
f est concave sur \mathbb{R}_+^* .

f) $f: x \mapsto e^{-2x}$ est définie et dérivable deux fois sur \mathbb{R} comme composée de fonctions dérivables. Elle est immédiatement strictement positive.

$$\forall x \in \mathbb{R}, f'(x) = -2e^{-2x} \text{ et } f''(x) = 4e^{-2x} > 0$$

x	$-\infty$ $+\infty$
f''(x)	+
f'(x)	_
f(x)	$+\infty$ $-\infty$

f est convexe sur \mathbb{R} .



g) $f: x \mapsto e^x - e^{-x}$ est définie et dérivable deux fois sur $\mathbb R$ comme somme de fonctions dérivables. On a bien sur, pour tout $x \in \mathbb R_+^*$

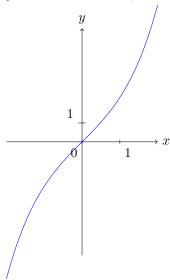
$$f(x) > 0 \iff e^x > e^{-x}$$
$$\iff x > -x$$
$$\iff x > 0.$$

De plus,

$$\forall x \in \mathbb{R}, f'(x) = e^x + e^{-x} \text{ et } f''(x) = e^x - e^{-x}$$

x	$-\infty$	0		$+\infty$
f''(x)	_		+	
f'(x)		+		
f(x)	$-\infty$			+∞

f est concave sur \mathbb{R}_{-} , convexe sur \mathbb{R}_{+} .

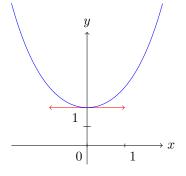


h) $f: x \mapsto e^x + e^{-x}$ est définie et dérivable deux fois sur \mathbb{R} comme somme de fonctions dérivables. Elle est évidemment strictement positive (somme d'exponentielles).

$$\forall x \in \mathbb{R}, f'(x) = e^x - e^{-x} \text{ et } f''(x) = e^x + e^{-x} > 0$$

x	$-\infty$ 0 $+\infty$
f''(x)	+
f'(x)	- +
f(x)	$+\infty$ $+\infty$ 2

f est convexe sur \mathbb{R} .



i) $f: x \mapsto \frac{1}{e^x - 1}$ est définie et dérivable deux fois sur \mathbb{R}^* comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas $(e^x - 1 \neq 0 \iff x \neq 0)$.

On a pour tout $x \in \mathbb{R}^*$

$$f(x) > 0 \iff e^x - 1 > 0$$

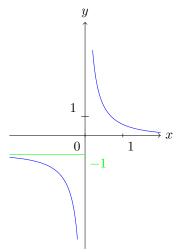
 $\iff x > 0$

Donc f(x) est du signe de x.

$$\forall x \in \mathbb{R}, f'(x) = -\frac{e^x}{(e^x - 1)^2} \text{ et } f''(x) = \frac{e^x(1 + e^x)}{(e^x - 1)^3}$$

x	$-\infty$) +∞
f''(x)	_	+
f'(x)	_	_
f(x)	-1 $-\infty$	$+\infty$ 0

f est concave sur \mathbb{R}_{-}^{*} , convexe sur \mathbb{R}_{+}^{*} .



j) $f: x \mapsto x \ln(x)$ est définie et dérivable deux fois sur \mathbb{R}_+^* comme produit de fonctions dérivables. On a le tableau de signe

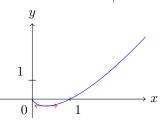
x	0		1		$+\infty$
x		+		+	
$\ln(x)$		_	0	+	
f(x)		_	0	+	

$$\forall x \in \mathbb{R}, f'(x) = \ln(x) + 1 \text{ et } f''(x) = \frac{1}{x} > 0$$

x	0		$\frac{1}{e}$		$+\infty$
f''(x)			+		
f'(x)		_	0	_	
f(x)	0		$-\frac{1}{\mathrm{e}}$		+∞

(la limite en 0 est une croisssance comparée)

f est convexe sur \mathbb{R}_{+}^{*} .

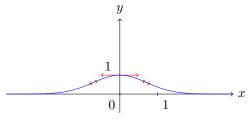


k) $f: x \mapsto e^{-x^2}$ est définie et dérivable deux fois sur $\mathbb R$ comme composée de fonctions dérivables, et est strictement positive (exponentielle).

$$\forall x \in \mathbb{R}, f'(x) = -2xe^{-x^2} \text{ et } f''(x) = (4x^2 - 2)e^{-x^2}$$

			· , ,		
x	$-\infty$	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	+∞
f''(x)	+	0	_	0	+
f'(x)		_	0	+	
f(x)	0		0		0

f est convexe sur $\left] -\infty, -\frac{1}{\sqrt{2}} \right] \cup \left[\frac{1}{\sqrt{2}}, +\infty \right[$, concave sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.



l) $f: x \mapsto \ln(1-x^2)$ est définie et dérivable deux fois sur] -1,1[comme composée de fonctions dérivables. En effet, pour $x \in \mathbb{R}$,

$$f(x)$$
 existe $\iff 1 - x^2 > 0$
 $\iff x^2 < 1$
 $\iff -1 < x < 1$

Comme pour tout $x \in]-1,1[,1-x^2 \le 1,$ on a $f(x) \le 0$ (et f ne s'annule qu'en 0).

$$\forall x \in \mathbb{R}, f'(x) = -\frac{2x}{1-x^2} \text{ et } f''(x) = -2\frac{1+x^2}{(1-x^2)^2} < 0$$

x	-1		0		1
f''(x)		+		+	
f'(x)		_	0	+	
f(x)	$-\infty$		0		-∞

f est concave.

